Saturday, February 2, 2019

NAMA : MUH ALFRIZHAN VIRALDI
NPM : 17 630 036

Metode Newton

Dalam analisis numerik, metode Newton (juga dikenal sebagai metode Newton-Raphson), yang mendapat nama dari Isaac Newton dan Joseph Raphson, merupakan metode yang paling dikenal untuk mencari hampiran terhadap akar fungsi riil.

Metode Newton sering konvergen dengan cepat, terutama bila iterasi dimulai "cukup dekat" dengan akar yang diinginkan. Namun bila iterasi dimulai jauh dari akar yang dicari, metode ini dapat meleset tanpa peringatan. Implementasi metode ini biasanya mendeteksi dan mengatasi kegagalan konvergensi.  

 Diketahui fungsi ƒ(x) dan turunannya ƒ '(x), kita memulai dengan tebakan pertama, x 0 . Hampiran yang lebih baik x 1 adalah






Contoh :

Tentukan akar dari persamaan 4x3 – 15x2 + 17x – 6 = 0 menggunakan Metode Newton Raphson. Penyelesaian :

f(x) = 4x3 – 15x2 + 17x – 6
f’(x) = 12x2 – 30x + 17

iterasi 1 :
ambil titik awal x0 = 3

f(3) = 4(3)3 – 15(3)2 + 17(3) – 6 = 18
f’(3) = 12(3)2 – 30(3) + 17 = 35
x1 = 3 – 18/35 = 2.48571

iterasi 2 :
f(2.48571) = 4(2.48571)3 – 15(2.48571)2 + 17(2.48571) – 6 = 5.01019
f’(2.48571) = 12(2.48571)2 – 30(2.48571) + 17 = 16.57388
x2 = 2.48571 – 5.01019/16.57388  = 2.18342
iterasi 3 :
f(2.18342) = 4(2.18342)3 – 15(2.18342)2 + 17(2.18342) – 6 = 1.24457
f’(2.18342) = 12(2.18342)2 – 30(2.18342) + 17 = 8.70527
x3 = 2.18342 – 1.24457/8.70527 = 2.04045
iterasi 4 :
f(2.04045) = 4(2.04045)3 – 15(2.04045)2 + 17(2.04045) – 6 = 0.21726
f’(2.04045) = 12(2.04045)2 – 30(2.04045) + 17 = 5.74778
x4 = 2.04045 – 0.21726/5.74778  = 2.00265
iterasi 5 :
f(3) = 4(2.00265)3 – 15(2.00265)2 + 17(2.00265) – 6 = 0.01334
f’(2.00265) = 12(2.00265)2 – 30(2.00265) + 17 = 5.04787
x5 = 2.00265 – 0.01334/5.04787 = 2.00001
iterasi 6 :
f(2.00001) = 4(2.00001)3 – 15(2.00001)2 + 17(2.00001) – 6 = 0.00006
f’(2.00001) = 12(2.00001)2 – 30(2.00001) + 17 = 5.00023
x6 = 2.00001 – 0.00006/5.00023 = 2.00000

iterasi 7 :
f(2) = 4(2)3 – 15(2)2 + 17(2) – 6 = 0


jika disajikan dalam tabel, maka seperti tabel dibawah ini.


karena pada iteasi ketujuh f(x6) = 0 maka akar dari persamaan tersebut adalah x = 2.


Atau contoh Soal 2 :

Hitung akar f(x)=e^x – 5x^2,
ε = 0.00001
x0 = 0.5

Penyelesaian
Sehingga iterasi Newton Raphson nya sebagai berikut:
Hasil setiap iterasi sebagai berikut:

Jadi, hampiran akarnya adalah x = 0.605267
NAMA : MUH ALFRIZHAN VIRALDI 
NPM: 17 630 036

ANALISIS KORELASI SEDERHANA

Analisis korelasi sederhana (Bivariate Correlation) digunakan untuk mengetahui keeratan hubungan antara dua variabel dan untuk mengetahui arah hubungan yang terjadi. Koefisien korelasi sederhana menunjukkan seberapa besar hubungan yang terjadi antara dua variabel. Dalam SPSS ada tiga metode korelasi sederhana (bivariate correlation) diantaranya Pearson Correlation, Kendall’s tau-b, dan Spearman CorrelationPearson Correlation digunakan untuk data berskala interval atau rasio, sedangkan Kendall’s tau-b, dan Spearman Correlation lebih cocok untuk data berskala ordinal.
Pada bab ini akan dibahas analisis korelasi sederhana dengan metode Pearson atau sering disebut Product Moment Pearson. Nilai korelasi (r) berkisar antara 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan antara dua variabel semakin kuat, sebaliknya nilai mendekati 0 berarti hubungan antara dua variabel semakin lemah. Nilai positif menunjukkan hubungan searah (X naik maka Y naik) dan nilai negatif menunjukkan hubungan terbalik (X naik maka Y turun).
Menurut Sugiyono (2007) pedoman untuk memberikan interpretasi koefisien korelasi sebagai berikut:
0,00    -   0,199    = sangat rendah
0,20    -   0,399    = rendah
0,40    -   0,599    = sedang
0,60    -   0,799    = kuat
0,80    -   1,000    = sangat kuat 
 Contoh Kasus:
 ebuah penelitian terhadap pohon Mahoni, dimana akan diteliti apakah ada hubungan antara tinggi pohon dengan diameter batang pohon, dengan artian apakah ada pengaruh diameter batang pohon terhadap tinggi pohon tersebut. 
Diambil sampel secara acak sejumlah delapan pohon mahoni.Dapat dilihat dari Tabel 1 pada kolom X dan Y.
Hal pertama yang akan kita lakukan adalah membentuk persamaan regresi, yaitu :
Y' = a + bX
Selanjutnya adalah menentukan konstanta a dan koefisien b, kita ikuti langkah sebagai berikut :
maka diperoleh :
Persamaan regresi diperoleh :
Y' = -1,3147 + 4,5413X
dimana :
Y' = Tinggi pohon mahoni yang diprediksi
X  = Diameter batang pohon mahoni
Interpretasi dari koefisien regresi :
  • Nilai a = -1,3147 artinya tidak ada diameter batang pohon maka tidak ada tinggi pohon. (karena tidak ada tinggi yang bernilai negatif sehingga dianggap nol).
  • Nilai b = 4,5413 artinya jika terjadi peningkatan diameter batang pohon mahoni satu satuan maka akan terjadi peningkatan tinggi pohon mahoni sebesar 4,5413 satuan.
Koefisien Determinasi R2 :
r = 0,886 bernilai positif dan kuat
artinya terdapat hubungan atau korelasi yang kuat antara tinggi pohon mahoni dengan diameter batang pohon mahoni. Semakin besar diameter batang pohon mahoni maka semakin tinggi batang pohon mahoni.
R= 0,886= 0,785
artinya sekitar 78,5% variasi dari variabel diameter batang pohon mahoni dapat menjelaskan variasi dari variabel tinggi pohon mahoni.
(cukup tinggi)
Standar Error Estimate Persamaan Regresi:
Jadi besarnya standar error estimate persamaan regresi adalah 6,6364. Hal ini menunjukkan penyimpangan data-data terhadap garis regresi, atau bagaimana penyimpangan data yang menyebar disekitar garis regresi.
(cukup kecil).
Pengujian Koefisien Regresi :

> Hipotesis Uji
Ho : b =  0
Ha : b ≠ 0
> Taraf Signifikansi
Pilih nilai signifikansi a = 5%

> Daerah Kritis
dengan nilai a = 5% dan derajat bebas n-2=8-2=6, maka diperoleh nilai t-tabel pada 5%/2 = 2,5% yaitu 2,447.
> Statistik Uji

> Keputusan
nilai t-hitung = 4,6805 > t-tabel = 2,447 sehingga Ho ditolak dan Ha diterima.
> Kesimpulan
Dengan tingkat signifikansi 5% cukup menjelaskan bahwa ada pengaruh diameter batang pohon mahoni terhadap tinggi pohon mahoni.
NAMA : MUH. ALFRIZHAN VIRALDI
NPM: 17 630 036

ANALISIS REGRESI LINEAR BERGANDA

Analisis regresi linier berganda adalah hubungan secara linear antara dua atau lebih variabel independen (X1, X2,….Xn) dengan variabel dependen (Y). Analisis ini untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen apakah masing-masing variabel independen berhubungan positif atau negatif dan untuk memprediksi nilai dari variabel dependen apabila nilai variabel independen mengalami kenaikan atau penurunan. Data yang digunakan biasanya berskala interval atau rasio.
            Persamaan regresi linear berganda sebagai berikut:
Y’ = a + b1X1+ b2X2+…..+ bnXn
Keterangan:
Y’                    =   Variabel dependen (nilai yang diprediksikan)
X1 dan X2      =   Variabel independen
a                      =   Konstanta (nilai Y’ apabila X1, X2…..Xn = 0)
b                            =    Koefisien regresi (nilai peningkatan ataupun penurunan)

 Contoh kasus:

Menurut kajian literatur permintaan suatu produk ditentukan oleh harga barang dan pendapatan seseorang. Hasil pengamatan terhadap 12 sampel atas permintaan suatu barang dalam hal ini gula diperoleh data harga minyak goreng dan pendapatan konsumen :




















Langkah-langkah penyelesaiannya:
> Variabel bebas dan variabel tak bebas
  • Variabel Bebas : X1 = Harga minyak goreng dan X2 = Pendapatan konsumen
  • Variabel Tak Bebas : Y = Permintaan minyak goreng
> Persamaan regresi linear berganda : Y' = a + b1X1 + b2X2
Menentukan nilai konstanta dan koefisien regresi
sehingga

Khusus untuk parameter bdata adalah dalam ribuan, sehingga hasil tersebut harus dibagi dengan 1000, diperoleh b1 = -0,000582 = -0,001.
Jadi persamaan Regresi Linear Berganda dengan dua variabel bebas adalah :

Y' = 12,7753 - 0,001 X1 - 0,488 X2
> Interpretasi koefisien regresi 
  • Nilai a = 12,7753 artinya jika tidak ada harga minyak goreng dan pendapatan konsumen, namun permintaan akan minyak goreng sebanyak 12,7753.
  • Nilai b1 = -0,001 artinya jika harga minyak goreng meningkat satu rupiah maka akan terjadi penurunan permintaan sebesar 0,001 satuan dimana pendapatan konsumen dianggap tetap.
  • Nilai b2 = - 0,488 artinya jika pendapatan konsumen mengalami kenaikan sebesar satu rupiah maka akan terjadi penurunan permintaan gula sebesar 0,488 satuan dimana harga gula dianggap tetap.
> Menghitung Koefisien Determinasi
Artinya sekitar 94,21% variasi variabel bebas harga minyak goreng X1 dan pendapatan konsumen Xdapat menjelaskan variasi variabel tak bebas permintaan minyak goreng Y.

Note :
b1 yang digunakan -0,582 dan pengali -32 seharusnya -32000 sehingga perkalian keduanya akan memiliki hasil yang sama yaitu (-0,00582 x -32000) = (-0,582 x 32).
> Menghitung Koefisien Korelasi Berganda
Artinya terjadi hubungan yang sangat kuat antara variabel bebas harga minyak goreng X1 dan pendapatan konsumen X2 dengan variabel tak bebas permintaan minyak goreng Y.
> Menghitung Nilai Standart Error Estimate
Jadi standart error persamaan regresi adalah 0,6818, hal ini menunjukkan penyimpangan data-data terhadap garis persamaan regresi linear berganda yang terbentuk. Nilainya cukup kecil.

> Menghitung Nilai Korelasi Parsial

dimana

Next Session adalah Pengujian Koefisien Regresi secara keseluruhan dan secara parsial.
NAMA: MUH ALFRIZHAN VIRALDI
NPM 17 630 036
TUGAS: STATISTIK


Analisis Regresi Sederhan
Analisis Regresi Sederhana adalah sebuah metode pendekatan untuk pemodelan hubungan antara satu variabel dependen dan satu variabel independen. Dalam model regresi, variabel independen menerangkan variabel dependennya. Dalam analisis regresi sederhana, hubungan antara variabel bersifat linier, dimana perubahan pada variabel X akan diikuti oleh perubahan pada variabel Y secara tetap. Sementara pada hubungan non linier, perubahaan variabel X tidak diikuti dengan perubahaan variabel y secara proporsional. seperti pada model kuadratik, perubahan x diikuti oleh kuadrat dari variabel x. Hubungan demikian tidak bersifat linier.
Secara matematis model analisis regresi linier sederhana dapat digambarkan sebagai berikut:
Y = A + BX + e
Y adalah variabel dependen atau respon
A adalah intercept atau konstanta
B adalah koefisien regresi atau slope
e adalah residual atau error
Secara praktis analisis regresi linier sederhana memiliki kegunaan sebagai berikut:
1.      Model regresi sederhana dapat digunakan untuk forecast atau memprediksi nilai Y. Namun sebelum melakukan forecasting, terlebih dahulu harus dibuat model atau persamaan regresi linier. Ketika model yang fit sudah terbentuk maka model tersebut memiliki kemampuan untuk memprediksi nilai Y berdasarkan variabel Y yang diketahui. Katakanlah sebuah model regresi digunakan untuk membuat persamaan antara pendapatan (X) dan konsumsi (Y). Ketika sudah diperoleh model yang fit antara pendapatan dengan konsumsi, maka kita dapat memprediksi berapa tingkat konsumsi masyarakat ketika kita sudah mengetahui pendapatan masyarakat.
2.      Mengukur pengaruh variabel X terhadap variabel Y. Misalkan kita memiliki satu serial data variabel Y, melalui analisis regresi linier sederhana kita dapat membuat model variabel-variabel yang memiliki pengaruh terhadap variabel Y. Hubungan antara variabel dalam analisis regresi bersifat kausalitas atau sebab akibat. Berbeda halnya dengan analisis korelasi yang hanya melihat hubungan asosiatif tanpa mengetahui apa variabel yang menjadi sebab dan apa variabel yang menjadi akibat.
Model regresi linier sederhana yang baik harus memenuhi asumsi-asumsi berikut:
1.      Eksogenitas yang lemah, kita harus memahami secara mendasar sebelum menggunakan analisis regresi bahwa analisis ini mensyaratkan bahwa variabel X bersifat fixed atau tetap, sementara variabel Y bersifat random. Maksudnya adalah satu nilai variabel X akan memprediksi variabel Y sehingga ada kemungkinan beberapa variabel Y. dengan demikian harus ada nilai error atau kesalahan pada variabel Y. Sebagai contoh ketika pendapatan (X) seseorang sebesar Rp 1 juta rupiah, maka pengeluarannya bisa saja, Rp 500 ribu, Rp 600 ribu, Rp 700 ribu dan seterusnya.
2.       Linieritas, seperti sudah dijelaskan sebelumnya bahwa model analisis regresi bersifat linier. artinya kenaikan variabel X harus diikuti secara proporsional oleh kenaikan variabel Y. Jika dalam pengujian linieritas tidak terpenuhi, maka kita dapat melakukan transformasi data atau menggunakan model kuadratik, eksponensial atau model lainnya yang sesuai dengan pola hubungan non-linier.
3.       Varians error yang konstan, ini menjelaskan bahwa varians error atau varians residual yang tidak berubah-ubah pada respon yang berbeda. asumsi ini lebih dikenal dengan asumsi homoskedastisitas. Mengapa varians error perlu konstan? karena jika konstan maka variabel error dapat membentuk model sendiri dan mengganggu model. Oleh karena itu, penanggulangan permasalahan heteroskedastisitas/non-homoskedastisitas dapat diatasi dengan menambahkan model varians error ke dalam model atau model ARCH/GARCH.
4.      Autokorelasi untuk data time series, jika kita menggunakan analisis regresi sederhana untuk data time series atau data yang disusun berdasarkan urutan waktu, maka ada satu asumsi yang harus dipenuhi yaitu asumsi autokorelasi. Asumsi ini melihat pengaruh variabel lag waktu sebelumnya terhadap variabel Y. Jika ada gangguan autokorelasi artinya ada pengaruh variabel lag waktu sebelumnya terhadap variabel Y. sebagai contoh, model kenaikan harga BBM terhadap inflasi, jika ditemukan atukorelasi artinya terdapat pengaruh lag waktu terhadap inflasi. Artinya inflasi hari ini atau bulan ini bukan dipengaruhi oleh kenaikan BBM hari ini namun dipengaruhi oleh kenaikan BBM sebelumnya (satu hari atau satu bulan tergantung data yang dikumpulkan).

Contoh Penggunaan Analisis Regresi Linear Sederhana dalam Produksi antara lain :
  1. Hubungan antara Lamanya Kerusakan Mesin dengan Kualitas Produk yang dihasilkan
  2. Hubungan Jumlah Pekerja dengan Output yang diproduksi
  3. Hubungan antara suhu ruangan dengan Cacat Produksi yang dihasilkan.
Model Persamaan Regresi Linear Sederhana adalah seperti berikut ini :

Y = a + bX

Dimana :
Y = Variabel Response atau Variabel Akibat (Dependent)
X = Variabel Predictor atau Variabel Faktor Penyebab (Independent)
a = konstanta
b = koefisien regresi (kemiringan); besaran Response yang ditimbulkan oleh Predictor.
Nilai-nilai a dan b dapat dihitung dengan menggunakan Rumus dibawah ini :
a =   (Σy) (Σx²) – (Σx) (Σxy)
.                n(Σx²) – (Σx)²
b =   n(Σxy) – (Σx) (Σy)
.                n(Σx²) – (Σx)²
Berikut ini adalah Langkah-langkah dalam melakukan Analisis Regresi Linear Sederhana :

  1. Tentukan Tujuan dari melakukan Analisis Regresi Linear Sederhana
  2. Identifikasikan Variabel Faktor Penyebab (Predictor) dan Variabel Akibat (Response)
  3. Lakukan Pengumpulan Data
  4. Hitung  X², Y², XY dan total dari masing-masingnya
  5. Hitung a dan b berdasarkan rumus diatas.
  6. Buatkan Model Persamaan Regresi Linear Sederhana.
  7. Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat.

Contoh Kasus Analisis Regresi Linear Sederhana 

Seorang Engineer ingin mempelajari Hubungan antara Suhu Ruangan dengan Jumlah Cacat yang diakibatkannya, sehingga dapat memprediksi atau meramalkan jumlah cacat produksi jika suhu ruangan tersebut tidak terkendali. Engineer tersebut kemudian mengambil data selama 30 hari terhadap rata-rata (mean) suhu ruangan dan Jumlah Cacat Produksi.

Penyelesaian

Penyelesaiannya mengikuti Langkah-langkah dalam Analisis Regresi Linear Sederhana adalah sebagai berikut :

Langkah 1 : Penentuan Tujuan

Tujuan : Memprediksi Jumlah Cacat Produksi jika suhu ruangan tidak terkendali

Langkah 2 : Identifikasikan Variabel Penyebab dan Akibat

Varibel Faktor Penyebab (X) : Suhu Ruangan,
Variabel Akibat (Y) : Jumlah Cacat Produksi






Langkah 3 : Pengumpulan Data

Berikut ini adalah data yang berhasil dikumpulkan selama 30 hari (berbentuk tabel) :
Tanggal
Rata-rata Suhu Ruangan
Jumlah Cacat
1
24
10
2
22
5
3
21
6
4
20
3
5
22
6
6
19
4
7
20
5
8
23
9
9
24
11
10
25
13
11
21
7
12
20
4
13
20
6
14
19
3
15
25
12
16
27
13
17
28
16
18
25
12
19
26
14
20
24
12
21
27
16
22
23
9
23
24
13
24
23
11
25
22
7
26
21
5
27
26
12
28
25
11
29
26
13
30
27
14

Langkah 4 : Hitung X², Y², XY dan total dari masing-masingnya

Berikut ini adalah tabel yang telah dilakukan perhitungan X², Y², XY dan totalnya :
Tanggal
Rata-rata Suhu Ruangan (X)
Jumlah Cacat        (Y)
X2
Y2
XY
1
24
10
576
100
240
2
22
5
484
25
110
3
21
6
441
36
126
4
20
3
400
9
60
5
22
6
484
36
132
6
19
4
361
16
76
7
20
5
400
25
100
8
23
9
529
81
207
9
24
11
576
121
264
10
25
13
625
169
325
11
21
7
441
49
147
12
20
4
400
16
80
13
20
6
400
36
120
14
19
3
361
9
57
15
25
12
625
144
300
16
27
13
729
169
351
17
28
16
784
256
448
18
25
12
625
144
300
19
26
14
676
196
364
20
24
12
576
144
288
21
27
16
729
256
432
22
23
9
529
81
207
23
24
13
576
169
312
24
23
11
529
121
253
25
22
7
484
49
154
26
21
5
441
25
105
27
26
12
676
144
312
28
25
11
625
121
275
29
26
13
676
169
338
30
27
14
729
196
378
Total (Σ)
699
282
16487
3112
6861


Langkah 5 : Hitung a dan b berdasarkan rumus Regresi Linear Sederhana
Menghitung Konstanta (a) :
a =   (Σy) (Σx²) – (Σx) (Σxy)
.               n(Σx²) – (Σx)²
a = (282) (16.487) – (699) (6.861)                30 (16.487) – (699)²
a = -24,38

Menghitung Koefisien Regresi (b)
b =   n(Σxy) – (Σx) (Σy)
.           n(Σx²) – (Σx)²
b = 30 (6.861) – (699) (282)
.          30 (16.487) – (699)²
b = 1,45

Langkah 6 : Buat Model Persamaan Regresi

Y = a + bX
Y = -24,38 + 1,45X

Langkah 7 : Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat

I. Prediksikan Jumlah Cacat Produksi jika suhu dalam keadaan tinggi (Variabel X), contohnya : 30°C
Y = -24,38 + 1,45 (30)
Y = 19,12
Jadi Jika Suhu ruangan mencapai 30°C, maka akan diprediksikan akan terdapat 19,12 unit cacat yang dihasilkan oleh produksi.
II. Jika Cacat Produksi (Variabel Y) yang ditargetkan hanya boleh 4 unit, maka berapakah suhu ruangan yang diperlukan untuk mencapai target tersebut ?
4 = -24,38 + 1,45X
1,45X = 4 + 24,38
X = 28,38 / 1,45
X = 19,57
Jadi Prediksi Suhu Ruangan yang paling sesuai untuk mencapai target Cacat Produksi adalah sekitar 19,57°C