Saturday, February 2, 2019

NAMA: MUH ALFRIZHAN VIRALDI
NPM 17 630 036
TUGAS: STATISTIK


Analisis Regresi Sederhan
Analisis Regresi Sederhana adalah sebuah metode pendekatan untuk pemodelan hubungan antara satu variabel dependen dan satu variabel independen. Dalam model regresi, variabel independen menerangkan variabel dependennya. Dalam analisis regresi sederhana, hubungan antara variabel bersifat linier, dimana perubahan pada variabel X akan diikuti oleh perubahan pada variabel Y secara tetap. Sementara pada hubungan non linier, perubahaan variabel X tidak diikuti dengan perubahaan variabel y secara proporsional. seperti pada model kuadratik, perubahan x diikuti oleh kuadrat dari variabel x. Hubungan demikian tidak bersifat linier.
Secara matematis model analisis regresi linier sederhana dapat digambarkan sebagai berikut:
Y = A + BX + e
Y adalah variabel dependen atau respon
A adalah intercept atau konstanta
B adalah koefisien regresi atau slope
e adalah residual atau error
Secara praktis analisis regresi linier sederhana memiliki kegunaan sebagai berikut:
1.      Model regresi sederhana dapat digunakan untuk forecast atau memprediksi nilai Y. Namun sebelum melakukan forecasting, terlebih dahulu harus dibuat model atau persamaan regresi linier. Ketika model yang fit sudah terbentuk maka model tersebut memiliki kemampuan untuk memprediksi nilai Y berdasarkan variabel Y yang diketahui. Katakanlah sebuah model regresi digunakan untuk membuat persamaan antara pendapatan (X) dan konsumsi (Y). Ketika sudah diperoleh model yang fit antara pendapatan dengan konsumsi, maka kita dapat memprediksi berapa tingkat konsumsi masyarakat ketika kita sudah mengetahui pendapatan masyarakat.
2.      Mengukur pengaruh variabel X terhadap variabel Y. Misalkan kita memiliki satu serial data variabel Y, melalui analisis regresi linier sederhana kita dapat membuat model variabel-variabel yang memiliki pengaruh terhadap variabel Y. Hubungan antara variabel dalam analisis regresi bersifat kausalitas atau sebab akibat. Berbeda halnya dengan analisis korelasi yang hanya melihat hubungan asosiatif tanpa mengetahui apa variabel yang menjadi sebab dan apa variabel yang menjadi akibat.
Model regresi linier sederhana yang baik harus memenuhi asumsi-asumsi berikut:
1.      Eksogenitas yang lemah, kita harus memahami secara mendasar sebelum menggunakan analisis regresi bahwa analisis ini mensyaratkan bahwa variabel X bersifat fixed atau tetap, sementara variabel Y bersifat random. Maksudnya adalah satu nilai variabel X akan memprediksi variabel Y sehingga ada kemungkinan beberapa variabel Y. dengan demikian harus ada nilai error atau kesalahan pada variabel Y. Sebagai contoh ketika pendapatan (X) seseorang sebesar Rp 1 juta rupiah, maka pengeluarannya bisa saja, Rp 500 ribu, Rp 600 ribu, Rp 700 ribu dan seterusnya.
2.       Linieritas, seperti sudah dijelaskan sebelumnya bahwa model analisis regresi bersifat linier. artinya kenaikan variabel X harus diikuti secara proporsional oleh kenaikan variabel Y. Jika dalam pengujian linieritas tidak terpenuhi, maka kita dapat melakukan transformasi data atau menggunakan model kuadratik, eksponensial atau model lainnya yang sesuai dengan pola hubungan non-linier.
3.       Varians error yang konstan, ini menjelaskan bahwa varians error atau varians residual yang tidak berubah-ubah pada respon yang berbeda. asumsi ini lebih dikenal dengan asumsi homoskedastisitas. Mengapa varians error perlu konstan? karena jika konstan maka variabel error dapat membentuk model sendiri dan mengganggu model. Oleh karena itu, penanggulangan permasalahan heteroskedastisitas/non-homoskedastisitas dapat diatasi dengan menambahkan model varians error ke dalam model atau model ARCH/GARCH.
4.      Autokorelasi untuk data time series, jika kita menggunakan analisis regresi sederhana untuk data time series atau data yang disusun berdasarkan urutan waktu, maka ada satu asumsi yang harus dipenuhi yaitu asumsi autokorelasi. Asumsi ini melihat pengaruh variabel lag waktu sebelumnya terhadap variabel Y. Jika ada gangguan autokorelasi artinya ada pengaruh variabel lag waktu sebelumnya terhadap variabel Y. sebagai contoh, model kenaikan harga BBM terhadap inflasi, jika ditemukan atukorelasi artinya terdapat pengaruh lag waktu terhadap inflasi. Artinya inflasi hari ini atau bulan ini bukan dipengaruhi oleh kenaikan BBM hari ini namun dipengaruhi oleh kenaikan BBM sebelumnya (satu hari atau satu bulan tergantung data yang dikumpulkan).

Contoh Penggunaan Analisis Regresi Linear Sederhana dalam Produksi antara lain :
  1. Hubungan antara Lamanya Kerusakan Mesin dengan Kualitas Produk yang dihasilkan
  2. Hubungan Jumlah Pekerja dengan Output yang diproduksi
  3. Hubungan antara suhu ruangan dengan Cacat Produksi yang dihasilkan.
Model Persamaan Regresi Linear Sederhana adalah seperti berikut ini :

Y = a + bX

Dimana :
Y = Variabel Response atau Variabel Akibat (Dependent)
X = Variabel Predictor atau Variabel Faktor Penyebab (Independent)
a = konstanta
b = koefisien regresi (kemiringan); besaran Response yang ditimbulkan oleh Predictor.
Nilai-nilai a dan b dapat dihitung dengan menggunakan Rumus dibawah ini :
a =   (Σy) (Σx²) – (Σx) (Σxy)
.                n(Σx²) – (Σx)²
b =   n(Σxy) – (Σx) (Σy)
.                n(Σx²) – (Σx)²
Berikut ini adalah Langkah-langkah dalam melakukan Analisis Regresi Linear Sederhana :

  1. Tentukan Tujuan dari melakukan Analisis Regresi Linear Sederhana
  2. Identifikasikan Variabel Faktor Penyebab (Predictor) dan Variabel Akibat (Response)
  3. Lakukan Pengumpulan Data
  4. Hitung  X², Y², XY dan total dari masing-masingnya
  5. Hitung a dan b berdasarkan rumus diatas.
  6. Buatkan Model Persamaan Regresi Linear Sederhana.
  7. Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat.

Contoh Kasus Analisis Regresi Linear Sederhana 

Seorang Engineer ingin mempelajari Hubungan antara Suhu Ruangan dengan Jumlah Cacat yang diakibatkannya, sehingga dapat memprediksi atau meramalkan jumlah cacat produksi jika suhu ruangan tersebut tidak terkendali. Engineer tersebut kemudian mengambil data selama 30 hari terhadap rata-rata (mean) suhu ruangan dan Jumlah Cacat Produksi.

Penyelesaian

Penyelesaiannya mengikuti Langkah-langkah dalam Analisis Regresi Linear Sederhana adalah sebagai berikut :

Langkah 1 : Penentuan Tujuan

Tujuan : Memprediksi Jumlah Cacat Produksi jika suhu ruangan tidak terkendali

Langkah 2 : Identifikasikan Variabel Penyebab dan Akibat

Varibel Faktor Penyebab (X) : Suhu Ruangan,
Variabel Akibat (Y) : Jumlah Cacat Produksi






Langkah 3 : Pengumpulan Data

Berikut ini adalah data yang berhasil dikumpulkan selama 30 hari (berbentuk tabel) :
Tanggal
Rata-rata Suhu Ruangan
Jumlah Cacat
1
24
10
2
22
5
3
21
6
4
20
3
5
22
6
6
19
4
7
20
5
8
23
9
9
24
11
10
25
13
11
21
7
12
20
4
13
20
6
14
19
3
15
25
12
16
27
13
17
28
16
18
25
12
19
26
14
20
24
12
21
27
16
22
23
9
23
24
13
24
23
11
25
22
7
26
21
5
27
26
12
28
25
11
29
26
13
30
27
14

Langkah 4 : Hitung X², Y², XY dan total dari masing-masingnya

Berikut ini adalah tabel yang telah dilakukan perhitungan X², Y², XY dan totalnya :
Tanggal
Rata-rata Suhu Ruangan (X)
Jumlah Cacat        (Y)
X2
Y2
XY
1
24
10
576
100
240
2
22
5
484
25
110
3
21
6
441
36
126
4
20
3
400
9
60
5
22
6
484
36
132
6
19
4
361
16
76
7
20
5
400
25
100
8
23
9
529
81
207
9
24
11
576
121
264
10
25
13
625
169
325
11
21
7
441
49
147
12
20
4
400
16
80
13
20
6
400
36
120
14
19
3
361
9
57
15
25
12
625
144
300
16
27
13
729
169
351
17
28
16
784
256
448
18
25
12
625
144
300
19
26
14
676
196
364
20
24
12
576
144
288
21
27
16
729
256
432
22
23
9
529
81
207
23
24
13
576
169
312
24
23
11
529
121
253
25
22
7
484
49
154
26
21
5
441
25
105
27
26
12
676
144
312
28
25
11
625
121
275
29
26
13
676
169
338
30
27
14
729
196
378
Total (Σ)
699
282
16487
3112
6861


Langkah 5 : Hitung a dan b berdasarkan rumus Regresi Linear Sederhana
Menghitung Konstanta (a) :
a =   (Σy) (Σx²) – (Σx) (Σxy)
.               n(Σx²) – (Σx)²
a = (282) (16.487) – (699) (6.861)                30 (16.487) – (699)²
a = -24,38

Menghitung Koefisien Regresi (b)
b =   n(Σxy) – (Σx) (Σy)
.           n(Σx²) – (Σx)²
b = 30 (6.861) – (699) (282)
.          30 (16.487) – (699)²
b = 1,45

Langkah 6 : Buat Model Persamaan Regresi

Y = a + bX
Y = -24,38 + 1,45X

Langkah 7 : Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat

I. Prediksikan Jumlah Cacat Produksi jika suhu dalam keadaan tinggi (Variabel X), contohnya : 30°C
Y = -24,38 + 1,45 (30)
Y = 19,12
Jadi Jika Suhu ruangan mencapai 30°C, maka akan diprediksikan akan terdapat 19,12 unit cacat yang dihasilkan oleh produksi.
II. Jika Cacat Produksi (Variabel Y) yang ditargetkan hanya boleh 4 unit, maka berapakah suhu ruangan yang diperlukan untuk mencapai target tersebut ?
4 = -24,38 + 1,45X
1,45X = 4 + 24,38
X = 28,38 / 1,45
X = 19,57
Jadi Prediksi Suhu Ruangan yang paling sesuai untuk mencapai target Cacat Produksi adalah sekitar 19,57°C


No comments:

Post a Comment